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Multiwavelets are generated from refinable function vectors by using multiresolution
analysis. In this paper we investigate the approximation properties of a multivariate
refinable function vector associated with a general dilation matrix in terms of both the
subdivision operator and the order of sum rules satisfied by the matrix refinement
mask. Based on a fact about the sum rules of biorthogonal multiwavelets, a coset
by coset (CBC) algorithm is presented to construct biorthogonal multiwavelets
with arbitrary order of vanishing moments. More precisely, to obtain biorthogonal
multiwavelets, we have to construct primal and dual masks. Given any primal
matrix mask a and a general dilation matrix M, the proposed CBC algorithm
reduces the construction of all dual masks of a, which satisfy the sum rules of
arbitrary order, to a problem of solving a well organized system of linear equations.
We prove in a constructive way that for any given primal mask a with a dilation
matrix M and for any positive integer k, we can always construct a dual mask a~
of a such that a~ satisfies the sum rules of order k. In addition, we provide a general
way for the construction of Hermite interpolatory matrix masks in the univariate
setting with any dilation factors. From such Hermite interpolatory masks, smooth
Hermite interpolants, including the well known cubic Hermite splines as a special
case, are obtained and are used to construct biorthogonal multiwavelets. As an
example, a C3 Hermite interpolant with support [&3, 3] is presented. Then we
shall apply the CBC algorithm to such Hermite interpolatory masks to construct
biorthogonal multiwavelets. Several examples of biorthogonal multiwavelets are
provided to illustrate the general theory. In particular, a C1 dual function vector
with support [&4, 4] of the cubic Hermite splines is given. � 2001 Academic Press
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1. INTRODUCTION

In her celebrated paper [10], Daubechies constructed a family of
compactly supported univariate orthogonal scaling functions and their
corresponding orthogonal wavelets with the dilation factor 2. Since then
wavelets with compact support have been widely and successfully used in
various applications such as image compression and signal processing
[11]. Each Daubechies wavelet is generated from one scaling function and
therefore, is called a scalar wavelet.

Though orthogonal wavelets have many desired properties such as
compact support, good frequency localization and vanishing moments,
they lack symmetry as demonstrated by Daubechies in [11]. However,
symmetry of wavelets is a much desired property in applications. Such a
property is claimed to produce less visual artifacts than non-symmetric
wavelets. To achieve symmetry, several generalizations of scalar orthogonal
wavelets have been studied in the literature. For example, biorthogonal
wavelets achieve symmetry where orthogonality is replaced with biortho-
gonality, and multiwavelets achieve both orthogonality and symmetry
where one scaling function is replaced with several scaling functions (i.e., a
scaling function vector). Wavelets in multidimensional spaces with a
general dilation matrix have also been extensively investigated in recent
years since in many applications we have to deal with higher dimensional
data such as images.

Scalar biorthogonal wavelets in both univariate case and multivariate
case have been extensively studied in the literature. See [5�7, 11, 16, 17, 20,
32, 41] and references therein for discussion on scalar biorthogonal wavelets.
With symmetry and many other desired properties, scalar biorthogonal
wavelets have been found to be more efficient and useful in many applications
than the orthogonal ones [11].

To achieve symmetry, another approach is to adopt multiwavelets where
a scaling function vector instead of a single scaling function is used. To
compare with scalar wavelets, multiwavelets have several advantages such
as shorter support and higher vanishing moments. The success of wavelets
largely contributes to the short support and high vanishing moments which
are competing objectives in the design of wavelets. That is, to obtain a
wavelet with higher vanishing moments, it is necessary to enlarge its support.
Such advantages of multiwavelets provide new opportunities and choices in
the wavelet theory which are impossible to achieve by using scalar wavelets.
With more flexible trade-off between high vanishing moments and short
support, multiwavelets are particularly attractive in the construction of
wavelets on a bounded domain [8] to deal with problems arising from a
finite domain with boundary conditions and are expected to be useful
in many applications such as numerical solutions to partial differential

19HERMITE INTERPOLANTS AND MULTIWAVELETS



equations [8]. As a generalization of the scalar wavelets, it is also of interest in
its own right to investigate multiwavelets. The advantages of multiwavelets
and their promising features in applications have attracted a great deal of
interest and effort in recent years to extensively study them. To only mention
a few references here, see [8, 9, 12, 21�23, 30, 34, 36, 37, 40, 42] and references
therein on discussion of various topics on multiwavelets and their applications.
The generalization of scalar wavelets to multiwavelets is not trivial and the
study of multiwavelets is much more complicated and involved than the
study of the scalar wavelets which we shall see later.

Before proceeding further, let us introduce some notation. An s_s
integer matrix M is called a dilation matrix if limn � � M &n=0. That is, all
the eigenvalues of a dilation matrix M are greater than one in modulus.
Throughout this paper, M denotes a dilation matrix and m :=|det M|.

In this paper, we are concerned with the following refinement equation,

,= :
; # Zs

a(;) ,(M } &;), (1.1)

where ,=(,1 , ..., ,r)
T is a r_1 vector of functions, called a refinable func-

tion vector, and a is a finitely supported sequence of r_r matrices on Zs,
called the (matrix refinement) mask. When r=1, , is called a scalar refinable
function and a is called a scalar refinement mask. Throughout this paper, all
masks and refinable function vectors are assumed to be compactly supported.

By Ja(0) we denote the following matrix associated with a mask a as

Ja(0) := :
; # Z s

a(;).

If ,1 , ..., ,r are functions in L1(Rs) with stable shifts and ,=(,1 , ..., ,r)
T

satisfies the refinement equation (1.1) with a mask a, then it was proved by
Dahmen and Micchelli [9] that

Ja(0) has a simple eigenvalue m and all other eigenvalues in modulus<m.

(1.2)

Conversely, if J a(0) satisfies the condition (1.2), it was proved by Heil and
Collella [22] and Cabrelli et al. [3] that there exists a unique vector , of
compactly supported distributions such that , satisfies (1.1) and Ja(0) ,� (0)
=m,� (0) with &,� (0)&2=1. We call such solution the normalized distributional
solution of (1.1) and throughout this paper we denote such normalized
solution of (1.1) with mask a by ,a. If , is another distribution solution of
(1.1), then we must have ,=c,a for some constant c.
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On the one hand, multiwavelets provide more flexibility and new features
which are not possible for scalar wavelets. On the other hand, in the multi-
wavelet case r>1, each element in the mask of the refinement equation
becomes an r_r matrix comparing with a scalar number in the scalar wavelet
case. The change from a mask of scalar numbers to a mask of matrices
makes the analysis and investigation of multiwavelets far more complicated
and involved than its scalar counterpart. For example, even in the univariate
case, the sum rule and vanishing moment conditions of a matrix mask are
much more complicated than the scalar case, see [2, 4, 9, 23, 29, 31, 36, 39].
The involvement of matrices in the mask makes the construction of multi-
wavelets with certain vanishing moments much more challenging than its
scalar counterpart. To our best knowledge, no systematic method is proposed
in the current literature to construct biorthogonal multiwavelets with
arbitrary order of sum rules even for the simplest case��the univariate
setting with the dilation factor 2. Many known approaches and construc-
tions in the scalar wavelet case do not apply to the multiwavelet case. Since
both biorthogonal multivariate wavelets and multiwavelets are of great
interest in both theory and applications, one aim of this paper is to
investigate the biorthogonal multiwavelets in multidimensional spaces and
to propose a method to construct them systematically.

Let l(Zs) denote the linear space of all sequences on Zs and l0(Zs)
denote the linear space of all finitely supported sequences on Zs. For any
positive integer r, by (l(Zs))r_r we denote the linear space of all sequences
of r_r matrices on Zs and by (l(Zs))r we denote the linear space of all
sequences of r_1 vectors on Zs. Similarly, we define (l0(Z

s))r_r and (l0(Zs))r.
Given any compactly supported distribution vector f =( f1 , ..., fr)

T, we define
the following linear operator cf on (l(Zs))r by

cf (*) := :
; # Zs

*(;)T f ( } &;), * # (l(Zs))r, (1.3)

where AT denotes the transpose of a matrix A. The shifts of f are said to
be linearly independent if cf (*)=0 for * in (l(Zs))r implies *=0. It was
proved by Jia and Micchelli [28] that the shifts of a compactly supported
distribution vector f =( f1 , ..., fr)

T are linearly independent if and only if
the sequences ( f� j (!+2?;)); # Z s , j=1, ..., r are linearly independent for all
! # Cs. The shifts of f are stable if the sequences ( f� j (!+2?;)); # Zs , j=1, ..., r
are linearly independent for all ! # Rs. Therefore, if the shifts of ,a are stable
or linearly independent, then (1.2) holds true.

Before proceeding further, let us introduce some notation. Recall that M
denotes a dilation matrix. Let 0M be a complete set of representatives of
the distinct cosets of Zs�MZs. Without loss of generality, we assume that
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0 # 0M . For any mask a in (l0(Zs))r_r, we shall use the following notation
throughout this paper

J a
= (+) := :

; # Z s

a(=+M;)(M&1=+;)+�+ !, + # Zs
+ , = # 0M (1.4)

and

Ja(+) := :
; # Z s

a(;)(M&1;)+�+ != :
= # 0M

J a
=(+), + # Zs

+ , (1.5)

where

Zs
+ :=[(;1 , ..., ;s) # Zs : ; j�0, j=1, ..., s]

and for any ;=(;1 , ..., ;s) # Zs and +=(+1 , ..., +s) # Zs
+ , ;+ :=;+1

1
} } } ;+s

s ,
+! :=+1 ! } } } +s ! and |;| :=|;1|+ } } } +|;s |. For any &=(&1 , ..., &s), +=
(+1 , ..., +s) # Zs

+ , we say that &�+ if &j�+j for all j=1, ..., s, and we say
that &<+ if &�+ and &{+. For any mask a in (l0(Zs))r_r, we say that the
mask a with a dilation matrix M satisfies the sum rules of order k if there
exists a set of r_1 vectors [ y+ : + # Zs

+ , |+|<k] with y0 {0 such that

:
0�&�+

(&1) |&| J a
=(&)T y+&&= :

|&| =|+|

m+
& y& \+ # Zs

+ , |+|<k, = # 0M ,

(1.6)

where the numbers m+
& are uniquely determined by

(M&1x)+

+ !
= :

|&| =|+|

m+
&

x&

& !
, x # Rs. (1.7)

Given a vector ,=(,1 , ..., ,r)
T of compactly supported distributions on

Rs, let S(,)=[c,(*) : * # (l(Zs))r] where the linear operator c, is defined
in (1.3). Following Heil et al. [23], we say that , has accuracy order k if
6k&1 �S(,) where 6k&1 denotes the set of all polynomials of total degree
less than k. We also agree that 6&1=[0]. Accuracy order of , has a close
relation with both the approximation order provided by , and the well
known Strang�Fix conditions on ,. See Jia [27] for such concepts and
related results.

When ,a is a refinable function vector with a mask a and a dilation
matrix M, under the assumption that the shifts of ,a are linearly independent,
Cabrelli et al. [2, 3] characterized the accuracy order of ,a in terms of the
order of sum rules satisfied by the mask a. Also see [1, 4, 23, 24, 29, 31, 36]
and references therein for discussion on accuracy order under various condi-
tions. In Section 2, we shall summarize and unify the discussion on accuracy
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order of a refinable distribution vector in the literature and provide a charac-
terization (see Theorem 2.4) of the accuracy order of ,a in terms of both
the subdivision operator and sum rules under a very mild condition.

Accuracy order of a refinable function vector is also closely related to the
concept of vanishing moments of biorthogonal multiwavelets (see [11]).
The success of a wavelet basis largely lies in the short support and high
accuracy order of a refinable function vector. It is also known that if a
refinable function vector ,a # C k has linearly independent shifts, then it is
necessary that ,a has accuracy order k+1. A function vector , in (L2(Rs))r

is called a primal function vector if , satisfies the refinement equation (1.1)
with a mask a in (l0(Zs))r_r and the shifts of , are linearly independent.
A dual function vector ,� of , is a function vector in (L2(Rs))r such that ,�
satisfies the refinement equation (1.1) with a mask a~ and

|
Rs

,(x) ,� (x+;)T dx=$(;) Ir \; # Zs, (1.8)

where Ir denotes the r_r identity matrix, and $(0)=1, $(;)=0 for all
; # Zs"[0]. Clearly, if , and ,� satisfy the conditions in (1.8), then the shifts
of , and ,� are linearly independent, respectively. A necessary condition for
, and ,� to satisfy the conditions in (1.8) is the following well known discrete
biorthogonal relations:

:
; # Zs

a(;) :~ (;+M:)T=m$(:) Ir \: # Zs. (1.9)

If a mask a in (l0(Zs))r_r satisfies (1.2) and there exists a sequence a~ in
(l0(Zs))r_r such that the conditions in (1.9) are satisfied, then we say that
a is a primal mask and any such mask a~ will be called a dual mask of a.
Dahmen and Micchelli proved in [9] that if a is a primal mask with a~
being a dual mask of a, then ,a is a primal function vector with ,a~ being
a dual function vector of ,a if and only if the subdivision schemes associated
with a and a~ converge in the L2 norm, respectively.

Given a primal mask a, to construct a dual mask of a, we need to solve
a system of linear equations given in (1.9). In the current literature, the
lifting scheme is known to be a good method for constructing a dual mask
of any given primal mask. For discussion on lifting scheme, the reader is
referred to [14, 32, 41]. After submitting this paper, we became aware of
the preprint of F. Keinert titled ``Raising multiwavelet approximation order
through lifting'' on discussion of lifting scheme in the univariate setting.
However, by such lifting scheme, to increase the order of sum rules satisfied
by the dual mask, both the primal and dual masks have to be changed
simultaneously.
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We point out that in the univariate setting, Plonka's factorization technique
of a matrix symbol is very useful in studying refinable function vectors
[34, 36] and was used by Plonka and Strela in [37] to construct smooth
refinable function vectors. This factorization technique was also used by
Strela in [40] to construct univariate biorthogonal multiwavelets. However,
the factorization technique does not apply to the higher dimensions and
the biorthogonal multiwavelets constructed by the factorization technique
in [40] have very long support.

As we mentioned before, the vanishing moments of a biorthogonal multi-
wavelet are important in both applications and construction of smooth
biorthogonal multiwavelets. See [5, 11] for discussion on vanishing moments
and their relation to sum rules. For a primal mask a, the lifting scheme can
be used to solve the discrete biorthogonal relation (1.9), which is a system
of linear equations, to get a dual mask a~ of a. To achieve high vanishing
moments of the resulting biorthogonal multiwavelet, the dual mask a~ must
satisfy the sum rules of high order. Even in the simplest case s=1 and
M=(2), it is not easy to use the definition of sum rules given in (1.6) to
achieve desired order of sum rules satisfied by a~ . The reason is that when
r>1, to obtain a dual mask a~ of a given primal mask a, even the equations
in the biorthogonal conditions (1.9) are linear, the equations given in (1.6)
for sum rules are no longer linear equations since in general the vectors y&

in (1.6) are determined by a~ . Due to such difficulty, many methods on
construction of scalar biorthogonal wavelets no longer hold in the multi-
wavelet case and not many examples of biorthogonal multiwavelets are
available in the literature. For example, univariate multiwavelets were
reported by Donovan et al. [12], Dahmen et al. [8], He and Lai [21],
and other examples were given in [6, 14, 30, 40]. One purpose of this
paper is to try to overcome such difficulty. In the scalar case, a coset by
coset (CBC) algorithm was proposed by Han in [17] to construct scalar
biorthogonal wavelets with arbitrary vanishing moments. In this paper, we
shall generalize the CBC algorithm in [17] to the multiwavelet case to
overcome the above mentioned difficulty. For the advantages of the CBC
algorithm over other known methods on construction of scalar biortho-
gonal wavelets, the reader is referred to [5, 17, 20].

In Section 3, we shall follow the line developed in [5, 17, 20] to discuss
how to construct biorthogonal multiwavelets in the most general case. We
propose a general coset by coset (CBC) algorithm in Section 3. Such CBC
algorithm reduces the construction of all dual masks, which satisfy the sum
rules of arbitrary order, of a given primal mask to the problem of solving
a well organized system of linear equations. Based on such algorithm, we
shall demonstrate that for any given primal mask a with a dilation matrix
M and for any positive integer k, we can construct a dual mask a~ of a such
that a~ satisfies the sum rules of order k. In Section 4, we construct a special
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family of primal masks��Hermite interpolatory masks in the univariate
setting with any dilation factor. The resulting refinable function vectors are
Hermite interpolants which are useful in curve design in computer aided
geometric design [13]. As an example, a C3 Hermite interpolant is con-
structed with support [&3, 3]. In particular, such construction of Hermite
interpolatory masks includes the cubic Hermite splines as a special case.
Several new examples of biorthogonal multiwavelets are provided to illustrate
the general theory developed in this paper. In particular, a C1 dual function
vector of the piecewise Hermite cubics is given and is supported on [&4, 4].
Finally, by the CBC algorithm, we construct a continuous dual function
vector for the primal function vector which is a piecewise polynomial
B-spline of order 6 with double knots in Plonka and Strela [37]. Such
primal function vector belongs to C4&' for any '>0, has accuracy order
6 and has support [0, 3].

A short outline of the paper is as follows. In Section 2, we discuss accuracy
order of refinable distribution vectors under a very mild condition. In
Section 3, we propose a CBC algorithm and we prove that for any primal
mask with a dilation matrix, a dual mask with any preassigned order of
sum rules can be constructed by such CBC algorithm. Finally, in Section 4,
we construct a family of Hermite interpolatory masks and several examples
of biorthogonal multiwavelets are presented to illustrate the general theory.

2. ACCURACY ORDER OF REFINABLE DISTRIBUTION VECTORS

In this section, under a very mild condition we shall investigate the accuracy
order of a refinable distribution vector in terms of both the subdivision
operator and the sum rules. Some results in this section are essentially known
in the literature under various assumption. Here we shall discuss accuracy
order under a very mild condition on the normalized distributional solution
to (1.1) and therefore, our result in this section includes most of the results on
accuracy order in [1, 4, 23, 24, 29, 31, 36] as special cases. Following the line
developed in Jia [26], we shall give a short discussion on accuracy order
without detailed proofs. Detailed treatment on accuracy order under various
conditions can be found in [1, 4, 23, 24, 29, 31, 36].

Let us introduce some notation and several auxiliary results here. Given
a mask a in (l0(Zs))r_r, the subdivision operator Sa associated with the
mask a and a dilation matrix M is defined by

Sa *(:)= :
; # Z s

a(:&M;)T *(;), : # Zs, * # (l(Zs))r. (2.1)

25HERMITE INTERPOLANTS AND MULTIWAVELETS



By 6 r
k we denote the set of r_1 polynomial vectors with each component

being a polynomial of degree at most k, and 6 r :=��
k=0 6 r

k . For any
p # 6 r, we shall use p to denote both the polynomial p(x) and the sequence
( p(:)): # Z s since they can be easily distinguished in the context.

Lemma 2.1. Let p # 6 r|Z s . Then Sa p # 6 r|Z s if and only if

:
; # Z s

a(=+M;)T p(x&M &1=&;)

= :
; # Z s

a(M;)T p(x&;) \= # 0M , x # Rs.

If this is the case, then Sa p(x)=�; # Z s a(=+M;)T p(M&1x&M&1=&;)
for any = # 0M .

By Dj we denote the partial derivative with respect to the j th unit coor-
dinate. For any +=(+1 , ..., +s) # Zs

+ , D+ denotes the differential operator
D+1

1
} } } D+s

s . Moreover, we write D=(D1 , ..., Ds)
T.

For any polynomial p # 6 r, we shall use the convention

p(x&iD)T := :
+ # Z

s
+

p(+)(x)T (&iD)+�+ !,

where i is the imaginary unit such that i2=&1. For a mask a in (l0(Z
s))r_r,

let

Ha(!) := :
; # Z s

a(;) e&i; } !�m, ! # Rs

and define

H a
k(!) :=H a((MT)&1 !) } } } H a((MT)&k !), k # N.

By computation, it is easy to verify the following result.

Proposition 2.2. If p # 6 r, then Sa p # 6 r if and only if

p(x&iD)T H a
1(2?;0)=0 \;0 # Zs"MTZs. (2.2)

Moreover, if p # 6r and Sa p # 6 r, then p(x&iD)T H a
1(2?MT;)=(Sa p)(Mx)T

for all ; # Zs, and for any k>1,

p(x&iD)T H a
k(2?MT;)=(Sa p)(Mx&iD)T H a

k&1(2?;) \; # Zs.
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For any mask a in (l0(Zs))r_r and any positive integer k, we define a
subspace Pa

k of 6 r
k as

Pa
k :=[ p # 6 r

k : S j
a p # 6 r

k | Z s \j # N]. (2.3)

It is evident that Pa
k is invariant under the subdivision operator Sa defined

in (2.1). By using the results in [4, 26, 27], we have the following result.

Theorem 2.3. If p # Pa
k , then c, a( p) # 6k where Pa

k is defined in (2.3)
and the operator c, a is defined in (1.3). In particular,

c, a( p)(x)= :
; # Z s

p(;)T ,a(x&;)= p(x&iD)T ,� a(0)

= :
+ # Z

s
+

1
+ !

p(+)(x)T (&iD) ,� a(0).

Conversely, if the sequences (,� j (2?(MT)&1 =+2?;)); # Z s , j=1, ..., r are
linearly independent for all = # 0M T where ,a=(,1 , ..., ,r)

T is the normalized
solution of (1.1) with the mask a, then for any q # 6k & S(,a), there exists
a unique p # Pa

k such that c, a( p)=q.

The result on accuracy order of a refinable distribution vector is the
following.

Theorem 2.4. Let a be a mask in (l0(Zs))r_r and satisfy the condition
(1.2) with a dilation matrix M. Let ,a=(,1 , ..., ,r)

T be the normalized
distributional solution of the refinement equation (1.1) with the mask a and
the dilation matrix M. Suppose that the sequences (,� j (2?(MT)&1 =+2?;)); # Z s ,
j=1, ..., r are linearly independent for all = # 0MT . Then the following statements
are equivalent:

(a) ,a has accuracy order k;

(b) dim Pa
k&1=dim 6k&1 where Pa

k&1 is defined in (2.3);

(c) The mapping c, a |P
a
k&1

: Pa
k&1 |Z s � 6k&1 is onto where c,a is defined

in (1.3);

(d) a satisfies the sum rules of order k.

Moreover, if a satisfies the sum rules of order k given in (1.6) with [y+ : + # Zs
+ ,

|+|<k] and yT
0 ,� a(0)=1, then

x+

+ !
= :

0�&�+

:
; # Z s

;&

& !
yT

+&&,a(x&;) \ |+|<k, + # Zs
+ .
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Proof. From Theorem 2.3, we see that for any positive integer k, the
mapping c,a |P

a
k&1

: Pa
k&1 � 6k&1 is well defined. Under the assumption

that the sequences (,� j (2?;)); # Z s , j=1, ..., r are linearly independent, by
[27, Lemma 8.2], c, a |P

a
k&1

is one-to-one. Therefore, by Theorem 2.3, ,a has
accuracy order k if and only if c,a |P

a
k&1

is one-to-one and onto which is
also equivalent to dim Pa

k&1=dim 6k&1 . Thus, we proved that (a), (b),
and (c) are equivalent.

Since c, a |P
a
k&1

is a one-to-one and onto mapping between Pa
k&1 and

6k&1 , the inverse mapping of c, a | P
a
k&1

carries the structure of 6k&1 into
Pa

k&1 . Define

p+ :=c&1
, a (x+�+ !), + # Zs

+ , |+|<k.

Since c, a(D&p+)=D&c, a( p+) for all &, + # Z s
+ with |+|<k, we may assume

that

p+= :
0�&�+

y+&&
x&

&!
\+ # Zs

+ , |+|<k, (2.4)

for some r_1 vectors y& , |&|<k. Note that c,a(Sa p+)(Mx)=c,a( p+)(x)=
x+�+ ! We have

(Sa p+)(x)=c&1
, a \(M&1x)+

+ ! +=c&1
, a \ :

|&|=|+|

m+
&

x&

& !+= :
|&|=|+|

m+
& p&(x),

where m+
& are given in (1.7). By Lemma 2.1, we have

:
|&|=|+|

m+
& p&(Mx)=Sa p+(Mx)

= :
; # Z s

a(=+M;)T p+(x&M &1=&;) \= # 0M .

Setting x=0 in the above equality, we have (1.6). Hence, (c) implies (d).
To prove that (d) implies (a), we define p+ as in (2.4). By the definition

of sum rules and observing that D&( p+)= p+&& where by convention p& #0
for & � Zs

+ , it is not difficult to verify that sa p # 6 r
k and Sa p=� |&|=|+| m+

& p&

for all |+|<k. Thus p+ # Pa
k&1 , and by Theorem 2.3, c,a( p+) # 6k&1 for all

|+|<k. Set q+ :=c, a( p+). Then we have

q+(M&1x)=c, a(Sa p+)(x)= :
|&| =|+|

m+
& q&(x) \+ # Zs

+ , |+|<k. (2.5)
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Note that D&q+=q+&& for all & # Zs
+ (see [3, Theorem 3.2]). We may

assume

q+(x)= :
0�&�+

l+&&
x&

& !
, + # Zs

+ , |+|<k,

for some l+ # C, + # Zs
+ with |+|<k. By induction, we have l+=0 for any

0<|+|<k. Hence, q+=l0x+�+ ! for all |+|<k. By Theorem 2.3, l0=
yT

0 ,� 0(0){0 follows directly from (1.2) and y0 {0. K

In fact, Pa
k=[ p # 6 r

k : S j
a p # 6 r

k \j=1, ..., dim 6 r
k] since Pa

k �6 r
k . If a

satisfies the sum rules of order k+1, then Sa |P
a
k
=(c, a |P

a
k
)&1 {M(c,a |P

a
k
)

where {M : 6k � 6k is given by {M( p)(x)= p(M&1x). Therefore, the
structure of Sa restricted to the subspace Pa

k can be easily analyzed by
using a much simpler operator {M .

3. CONSTRUCTION OF DUAL MASKS WITH ARBITRARY ORDER
OF SUM RULES

In this section, we shall discuss how to systematically construct dual
masks with arbitrary order of sum rules for any given primal mask. More
precisely, given a primal mask a, for any positive integer k, how to find all
dual masks of a such that the dual masks satisfy the sum rules of order k.
Even in the scalar and multivariate case, this is not straightforward and
there are a lot of literature discussing it, see [5, 7, 11, 16, 17, 25, 32, 41]
and references therein. This problem is also called filter design in the
language of engineering.

As for the multiwavelet case, even in the univariate setting, to our best
knowledge, no systematic method is available in the current literature to
deal with this problem. As a matter of fact, it took a relatively long time
in the wavelet community to find a continuous dual scaling function vector
of the well known cubic Hermite splines [8]. In this paper, we shall demonstrate
that designing multiwavelets with arbitrary vanishing moments can be reduced
to solve a system of well organized linear equations by using a CBC algorithm.
As an application of this method, a C1 dual scaling function vector with
support [&4, 4] of the cubic Hermite splines will be given in Section 4.
More interesting is that a family of Hermite interpolatory masks will be
constructed in Section 4 such that it includes the cubic Hermite splines as
a special case. Several other examples of biorthogonal multiwavelets will
also be provided in Section 4. Due to the length of this paper, we shall
discuss the smoothness and convergence problems associated with the
refinable function vectors of our construction elsewhere.
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For any j # N _ [0], let Oj be the ordered set of [+ # Zs
+ : |+|= j] in the

lexicographic order. That is, (&1 , ..., &s) is less than (+1 , ..., +s) in lexico-
graphic order if &j=+j for j=1, ..., i&1 and &i<+ i . By *Oj we denote the
cardinality of the set Oj . The Kronecker product of two matrices A=
(aij)1�i�l, 1� j�n and B, written as A�B, is defined to be the matrix

A�B :=_
a11B
a21B

b
al1B

a12 B
a22B

b
al2B

} } }
} } }
. . .
} } }

a1nB
a2nB

b
alnB& .

The following result is crucial in the CBC algorithm and is a generaliza-
tion of Theorem 6.1 in Han [17].

Theorem 3.1. Let a and a~ in (l0(Zs))r_r be two masks satisfying the
discrete biorthogonal relation (1.9) with a dilation matrix M. Suppose that
Ja(0) satisfies the condition (1.2) and a~ satisfies the sum rules of order k for
some positive integer k, i.e., there exist vectors y~ + , |+|<k in Cr with y~ 0 {0
such that

:
0�&�+

(&1) |&| J a~
=(&)T y~ +&&= :

|&| =|+|

m+
& y~ & \+ # Zs

+ , |+|<k, = # 0M ,

where m+
& are given in (1.7) and 0M is a complete set of representatives of

the distinct cosets of Zs�MZs with 0 # 0M . Let Oj be the ordered set of
[+ # Zs

+ : |+|= j] in the lexicographic order. Then y~ + , |+|<k are uniquely
determined up to a scalar multiplier constant by the following recursive
relation: Ja(0) y~ 0=my~ 0 and for j=1, ..., k&1, the vectors y~ +(+ # O j) are
determined by

( y~ +)+ # Oj
=[mIr(*Oj )

&(m+
& )+, & # Oj

�Ja(0)]&1

_\ :
0�'<+

:
|&| =|'|

m'
& Ja(+&') y~ &++ # Oj

.

In particular, when M=dIs where d is an integer, we have J a(0) y~ 0=d sy~ 0

and

y~ + =(d |+|+sIr&Ja(0))&1 :
0�&<+

d |+&&| J a(+&&) y~ & ,

0<|+|<k, + # Zs
+ .
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Proof. From the discrete biorthogonal relation (1.9), we have

m :
: # Z s

$(:) Ir
:&

& !
= :

: # Z s

:
; # Z s

a(;) a~ (;+M:)T :&

& !
, & # Zs

+ .

Note that

:&

& !
=

((M&1;+:)&M&1;)&

& !

= :
0�'�&

(&1) |'| (M&1;)'

' !
(M&1;+:)&&'

(&&')!
.

Therefore,

m$(&) Ir = :
0�'�&

:
: # Z s

:
; # Z s

(&1) |'| a(;)
(M&1;)'

' !

_a~ (;+M:)T (M&1;+:)&&'

(&&')!

= :
= # 0M

:
0�'�&

(&1) |'| :
; # Z s

a(=+M;)
(M&1=+;)'

' !
J a~

= (&&')T.

Hence, we have

m$(&) Ir= :
= # 0M

:
0�'�&

(&1) |'| J a
= (') J a~

=(&&')T, & # Zs
+ . (3.1)

For any &, + # Zs
+ such that |+|<k and &�+, multiplying (&1) |&| y~ +&&

with both sides of (3.1) and taking sum, we have

my~ + = :
0�&�+

(&1) |&| m$(&) y~ +&&

= :
= # 0M

:
0�&�+

:
0�'�&

(&1) |&&'| J a
= (') J a~

= (&&')T y~ +&&

= :
= # 0M

:
0�'�+

:
'�&�+

(&1) |&&'| J a
=(') J a~

= (&&')T y~ +&&

= :
= # 0M

:
0�'�+

J a
=(') :

0�&�+&'

(&1) |&| J a~
=(&)T y~ +&'&& .
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Since a~ satisfies the sum rules of order k, by (1.6) and the above equality,
we have

my~ + = :
= # 0M

:
0�'�+

J a
= (') :

|&|=|+&'|

m+&'
& y~ &

= :
0�'�+

:
|&|=|+&'|

m+&'
& J a(') y~ &= :

0�'�+

:
|&|=|'|

m'
& J a(+&') y~ & .

Thus, we deduce that

my~ +& :
|&|=|+|

m+
& Ja(0) y~ & = :

0�'<+

:
|&|=|'|

m'
& Ja(+&') y~ & ,

+ # Zs
+ , |+|<k. (3.2)

Regarding ( y~ +)+ # Oj
as an r(*O j)_1 column vector where *Oj is the

cardinality of the set Oj , Eq. (3.2) can be rewritten in the matrix form

[mIr(*Oj)
&(m+

& )+, & # Oj
�Ja(0)] ( y~ +)+ # Oj

=\ :
0�'<+

:
|&|=|'|

m'
& Ja(+&') y~ &++ # Oj

,

for j=0, 1, ..., k&1. When j=0, we have my~ 0=J a(0) y~ 0 . Since (1.2) holds
true, such vector y~ 0 is unique up to a scalar multiplier constant. When
j=1, ..., k&1, it is easy to see that all the eigenvalues of (m+

& )+, & # Oj
are

_&+, + # Oj and therefore are less than 1 in modulus where _=(_1 , ..., _s)
T

and _j are all the eigenvalues of M. Since a satisfies the condition (1.2), we
conclude that the matrices mIr(*Oj)

&(m+
& )+, & # Oj

�Ja(0) are invertible for
j>0 which completes the proof. K

When r=1, Theorem 3.1 can be reduced to the following form.

Corollary 3.2. Let a and a~ in l0(Z
s) be two masks satisfying the

discrete biorthogonal relation (1.9) with a dilation matrix M. Suppose that
�; # Z s a(;)=m :=|det M| and a~ satisfies the sum rules of order k. Let
ha(+) :=�; # Z s a~ (;) ;+�m for + # Zs

+ . Then ha(+), |+|<k are given by the
following recursive relation: for + # Zs

+ and |+|<k,

ha(+)=$(+)&m&1 :
0�&<+

(&1) |+&&| + !
& !(+&&)!

ha(&) :
; # Z s

a(;) ;+&&.

In the following we shall study how to construct dual masks with
arbitrary order of sum rules. For simplicity of exposition, we shall first
investigate the case when the primal masks are interpolatory masks. This
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restriction is not essential and can be removed as demonstrated in [5]. We
shall outline such construction for the general case at the end of this
section.

CBC Algorithm (Coset by Coset Algorithm). Let a # (l0(Zs))r_r be
a mask such that Ja(0) satisfies (1.2) with a dilation matrix M, a(0) is
invertible and a(M;)=0 for all ; # Zs"[0]. Let k be a positive integer.

(1) Compute the vectors y~ + , + # Zs
+ with |+|<k as in Theorem 3.1

such that y~ 0 {0;

(2) For any = # 0M "[0], choose an appropriate subset E= of Zs such
that after setting a~ (=+M;)=0 for all ; # Zs"E= , the following linear
system

:
0�&�+

(&1) |&| J a~
= (&)T y~ +&&= :

|&| =|+|

m+
& y~ & \+ # Zs

+ , |+|<k (3.3)

has at least one solution for [a~ (=+M;): ; # E=] where Ja~
= (&) is defined in

(1.4) as

J a~
= (&) := :

; # E=

a~ (=+M;)(M&1=+;)&�& !;

(3) Construct the coset of a~ at 0 as follows: for any : # Zs,

a~ (M:)=_m$(:) Ir& :
= # 0M "[0]

:
; # E=

a~ (=+M;) a(=+M(;&:))T& (a(0)T)&1.

Then the mask a~ is a dual mask of the given mask a and a~ satisfies the sum
rules of order k.

Proof. Since a(M;)=0 for all ; # Zs"[0], we can rewrite (1.9) as

m$(:) Ir= :
= # 0M

:
; # Z s

a(=+M;) a~ (=+M;+M:)T

=a(0) a~ (M:)T+ :
= # 0M"[0]

:
; # Z s

a(=+M;&M:) a~ (=+M;)T.

Therefore, under the assumption that a is an interpolatory mask, the
discrete biorthogonal relation (1.9) is equivalent to the equality in Step (3).
To prove that a~ satisfies the sum rules of order k, by the definition of sum
rules in (1.6) and Eq. (3.3), it suffices to verify that

:
0�&�+

(&1) |&| J a~
0(&)T y~ +&&= :

|&|=|+|

m+
& y~ & \+ # Zs

+ , |+|<k. (3.4)
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As in Theorem 3.1, from the discrete biorthogonal relation (1.9), we have

my~ += :
= # 0M

:
0�'�+

J a
= (') :

0�&�+&'

(&1) |&| J a~
= (&)T y~ +&'&& , + # Zs

\ .

As we know from the proof of Theorem 3.1, [ y~ + : |+|<k] satisfies the
equation

my~ += :
= # 0M

:
0�'�+

J a
= (') :

|&|=|+&'|

m+&'
& y~ & , |+|<k.

Therefore, subtracting the last equality from the previous one and using
Eq. (3.3), we end up with

:
0�'�+

J a
0(') _ :

0�&�+&'

(&1) |&| J a~
0(&)T y~ +&'&&& :

|&|=|+&'|

m+&'
& y~ &&=0

\ |+|<k.

Since J a
0(0)=a(0) and therefore, is invertible, by induction, the above equality

implies (3.4) which completes the proof. K

The advantage of the above algorithm lies in that we only need to deal
with each coset = # 0M "[0] separately in Step (2). If a~ is a dual mask of a
such that a~ satisfies the sum rules of order k, then a~ must be obtained from
the above CBC algorithm by choosing some subset E= and a solution in
(3.3). The reader may wonder how to choose the subset E= of Zs such that
there is at least one solution to (3.3). In general, when E= is large enough,
there must be a solution to (3.3). In the scalar case r=1, this fact was
discussed in detail in [5, 17] and we shall sketch the ideas later in this
section. For the multiwavelet case r>1, let us demonstrate this fact for the
univariate case. First, without loss of generality, we may assume that
y~ 0=[1, 0, ..., 0]T. For any = # 0M"[0], let E= be any subset of Z such that
*E==k. Now set a~ (=+M;)=0 for any ; # Z"E= . For any matrix A, let
A[i, j] denote its (i, j) entry. Set a~ (=+M;)[i, j]=0 (or any number as
you want) for all ; # E= , i=2, ..., r and j=1, ..., r. Then (3.3) has a unique
solution for [a~ (=+M;)[1, j]: ; # E= , j=1, ..., r] since in this case (3.3) is
reduced to the equation

:
; # E=

a~ (=+M;)[1, j](M&1=+;)+= g=, j (+), 0�+<k,

where g=, j (+) are constants derived from (3.3). It is evident that the above
equation has a unique solution since its coefficient matrix is a Vandermonde
matrix.
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From the above CBC algorithm, it is not difficult to see that for any positive
integer k, there always exists a dual mask which satisfies the sum rules of order
k. We shall prove this fact for the general case at the end of this section.
In the case r=1, Eq. (3.3) becomes

:
; # Z s

a~ (=+M;)(=+M;)+=ha(+) \ |+|<k, + # Zs
+ ,

where ha(+) are calculated from Corollary 3.2. See [17] for more details.
When r=1, in [5], we demonstrated that given any primal mask a, the
CBC algorithm in [5, 17] reduces the construction of all the dual masks of
a such that the dual masks satisfy the sum rules of order k to a problem
of obtaining a sequence b in l0(Zs) such that b(0)=1, b(M;)=0 for all
; # Zs"[0], and for each = # 0M "[0],

:
; # Z s

b� (=+M;)(=+M;)+= g=(+) \ |+|<k, + # Z s
+ ,

where g=(+), |+|<k can be similarly computed as ha(+).
In the scalar case r=1, an algorithm is proposed in [5, 17, 20] to

concretely implement the general CBC algorithm. Let a be a given scalar
primal mask which is symmetric about the origin. For any positive integer
k, such algorithm gives a unique dual mask of a such that the dual mask
satisfies the sum rules of order 2k and is symmetric about the origin. See
[5, 17, 20] for some examples of scalar biorthogonal wavelets constructed
by such CBC algorithm.

In the following, we shall study how to construct dual masks in the most
general case. We shall demonstrate in a constructive way that for any given
primal mask a with a dilation matrix M, there always exists an dual mask
a~ of a such that a~ satisfies the sum rules of any preassigned order.

For any mask a # (l0(Z
s))r_r and for any = # 0M , by a= we denote the

sequence

a=(;) :=a(=+M;), ; # Zs.

Under the lexicographic order, 0M is an ordered set, say 0M=[=1 , ..., =m].
It is a well known fact that a is a primal mask with a dilation matrix M
if and only if

Rank(a=1
(z), ..., a=m

(z))=r \z # Ts :=[(z1 , ..., zs): |z1|= } } } =|zs |=1],

where

a=(z) := :
; # Z s

a(=+M;) Z ;, z # Ts.

Moreover, a~ is a dual mask of a if and only if

:
= # 0M

a=(z) a~ =(z)T=mIr \z # Ts.
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The following known fact is employed in the lifting scheme in some
sense. For detail about lifting schemes, see [32, 41] and references therein.

Proposition 3.3. Let a in (l0(Zs))r_r be a primal mask with a dilation
matrix M. Suppose there exist sequences a~ |, | # 0M in (l0(Zs))r_r such that

:
= # 0M

a=(z) a~ |
= (z)T=m$(|) Ir \| # 0M

and the matrix (a~ |
= (z))|, = # 0M

is invertible for all z # Ts. Then for any
sequence a~ in (l0(Zs))r_r, a~ is a dual mask of a if and only if there exists a
sequence b in (l0(Z

s))r_r with b0 (z)=Ir such that

a~ |(z)= :
= # 0M

b=(z) a~ =
|(z) \| # 0M , z # Ts. (3.5)

Proof. If a~ satisfies (3.5), it is easy to verify that

:
| # 0M

a|(z) a~ |(z)T= :
= # 0M

:
| # 0M

a|(z) a~ =
|(z)T b=(z)T

=mb0(z)T=mIr .

Thus, a~ is a dual mask of a.
Conversely, if a~ is a dual mask of a, setting

(b=1
(z), ..., b=m

(z)) :=(a~ =1
(z), ..., a~ =m

(z))(a~ |
= (z))&1

|, = # 0M
,

where [=1 , ..., =m]=0M , then b0(z)=Ir and (3.5) holds true. K

It is well known that the invertible matrix (a~ |
= (z))|, = # 0M

is used in deriv-
ing the associated dual wavelet masks from a and a~ and such matrix can
be constructed from the mask a by an algorithm proposed in [33]. With
the help of Theorem 3.1 and Proposition 3.3, we demonstrate the following
(obvious?) fact:

Theorem 3.4. Let a be a primal mask in (l0(Zs))r_r with a dilation
matrix M. For any positive integer k, there exists a dual mask a~ of a such
that a~ satisfies the sum rules of order k

Proof. Since a is a primal mask, by Quillen�Suslin Theorem, there exist
sequences a~ | (| # 0M) in (l0(Zs))r_r such that the conditions in Proposi-
tion 3.3 are satisfied. Such sequences a~ | can be constructed from a by an
algorithm proposed in [33]. Let a~ be a sequence in (l0(Zs))r_r given by

a~ |(z) := :
= # 0M

b=(z) a~ =
|(z), | # 0M , (3.6)
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where b # (l0(Zs))r_r is a sequence to be determined. In order to obtain a
dual mask a~ (in the above form) of a such that a~ satisfies the sum rules of
order k, by Proposition 3.3, it suffices to demonstrate that there does exist
a sequence b such that b0(z)=Ir and a~ satisfies the sum rule equations

:
0�&�+

(&1) |&| J a~
|(&)T y~ +&& = :

|&|=|+|

m+
& y~ & \+ # Zs

+ ,

|+|<k, | # 0M , (3.7)

where the vectors y~ + , |+|<k are computed from Theorem 3.1 with y~ 0 {0.
Without loss of generality, we may assume y~ 0=[1, 0, ..., 0]T. From (3.6),
for any & # Zs

+ and | # 0M , we deduce that

J a~
|(&)= :

: # Z s

a~ |(:)
(M&1|+:)&

& !

= :
= # 0M

:
: # Z s

:
; # Z s

b=(;)
(M&1=+;)'

' !

_ :
: # Z s

a~ =
|(:&;)

(M&1(|&=)+:&;)&&'

(&&')!

= :
0�'�&

:
= # 0M

J b
=(') F =

|(&&'),

where F =
|(+) :=�; # Z s a~ =

|(;)(M &1(|&=)+;)+�+ ! for any + # Zs
+ . Thus,

the linear system (3.7) can be rewritten: for all |+|<k and | # 0M ,

:
0�&�+

:
0�'�&

:
= # 0M

(&1) |&| F =
|(&&')T J b

= (')T y~ +&&= :
|&|=|+|

m+
& y~ & .

(3.8)

Therefore, after changing the order of summation in the left side of (3.8),
we get

:
0�'�+

:
0�&�+&'

:
= # 0M

(&1) |&+'| F =
|(&)T J b

= (')T y~ +&'&&= :
|&|=|+|

m+
& y~ & .

In other words, (3.7) can be rewritten in the form

:
= # 0M

F =
|(0)T (&1) |+| J b

=(+)T y~ 0

+ :
0�'�+

:
0�&�+&'

:
= # 0M

(&1) |&+'| F =
|(&)T J b

=(')T y~ +&'&&

= :
|&|=|+|

m+
& y~ & , \+ # Zs

+ , |+|<k, | # 0M
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with a sequence b to be determined. Note that each b=(;) is an r_r matrix.
By b=(;)[i, j] we denote the (i, j) entry of the matrix b=(;). Regard all
b=(;)[i, j] as parameters for all = # 0M , ; # Zs, 2�i�r and 1� j�r. Let
c in (l0(Zs))r be given by c(;)=(b(;)[1, 1], ..., b(;)[1, r])T. Then it is
easily seen that J c

|(+)=J b
|(+)T y~ 0 since y~ 0=[1, 0, ..., 0]T. Therefore, we

end up with the equations

:
= # 0M

F =
|(0)T (&1) |+| J c

=(+)

+ :
0�&<+

:
= # 0M

G =
|, &J c

=(&)= g|
+ , \| # 0M , |+|<k, (3.9)

where G=
|, & are constant matrices, and g|

+ are vectors with parameters
[b=(;)[i, j]: = # 0M , ; # Zs, 2�i�r, 1� j�r]. Since F =

|(0)=a~ =
|(1) and

(a~ =
|(z))=, | # 0M

is invertible, the matrix (F =
|(0))=, | # 0M

has full rank which
implies that the equations (3.9) can be uniquely solved as

J c
=(+)= f =

+ \= # 0M , + # Zs
+ , |+|<k, (3.10)

where f =
+ are vectors with parameters [b=(;)[i, j]: = # 0M , ; # Zs, 2�i�r,

1� j�r].
We now prove that the following linear system

J c
0(+)= f 0

+ \+ # Zs
+ , |+|<k (3.11)

has a solution. Note that (3.6) and the biorthogonal condition imply that

mb0(z)= :
= # 0M

a=(z) a~ =(z)T \z # Ts

which can be rewritten as

mb(M:)= :
= # 0M

:
; # Z s

a(=+M;) a~ =(=+M;+M:)T, : # Zs. (3.12)

From (3.12), by the same argument as in Theorem 3.1, we have

J b
0(&)= :

= # 0M

:
0�'�&

(&1) |'| J a
= (') J a~

= (&&')T, & # Zs
+

which is similar to (3.1). Since a~ must satisfy (3.7), by a similar argument
as in Theorem 3.1, we have

m :
0�&�+

(&1) |&| J b
0(&) y~ +&&= :

0�'�+

:
|&|=|'|

m'
& Ja(+&') y~ & \ |+|<k.

(3.13)
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Since y~ + , |+|<k satisfy (3.2), we deduce that

:
0�&�+

(&1) |&| J b
0(&) y~ +&&= y~ + \+ # Zs

+ , |+|<k. (3.14)

By the uniqueness of f =
+ , = # 0M and |+|<k, we conclude that the linear

system (3.11) must be equivalent to the linear system (3.14) since J c
0(+),

|+|<k can also be uniquely solved from (3.14).
It is evident that b0(z)=Ir is a solution to (3.14). Therefore, b0(z)=Ir is

a solution to (3.11). Set b0(M;)=$(;) Ir and b=(;)[i, j] :=0 (or any other
numbers as long as b= in (l0(Zs))r_r) for all = # 0M"[0], ; # Zs, 2�i�r
and 1� j�r. Then for each = # 0M"[0], f =

+ in (3.10) are constants.
To demonstrate that for each = # 0M "[0], (3.10) has at least one

solution, it suffices to prove that for each = # 0M "[0] and j=1, ..., r, the
following linear system

:
; # E=

C(;)(M&1=+;)+�+ !=h =
+ \+ # Zs

+ , |+|<k (3.15)

has a solution for C(;), ; # E= where E= is a subset of Zs, C(;)=
b=(;)[1, j] and h=

+ :=f =
+[ j]. It is evident that (3.15) can be rewritten as

:
; # E=

C(;) ;+=h� =
+ \+ # Zs

+ , |+|<k (3.16)

for some constants h� =
+ . The above linear system always has a solution for

[C(;): ; # E=] when E= is large enough. For example, if E= :=[; # Zs
+ :

|;|<k], then (3.16) has a unique solution for [C(;): ; # E=]. For the
solvability of (3.16), the reader is referred to [35] on multivariate polyno-
mial interpolation. K

The proof of Theorem 3.4 illustrates the general procedure to construct
all dual masks of any given primal mask such that the dual masks satisfy
the sum rules of any preassigned order. Though a general CBC algorithm
for the general primal mask is possible but the exposition of such algorithm
is much more complicated and technical. For the sake of simplicity, we
shall not discuss the details here. In general, there are three major steps in
constructing a dual mask with arbitrary order of sum rules. First, solve the
linear system given in the discrete biorthogonal relation (1.9) by Proposi-
tion 3.3 or by any other method. Second, for any fixed positive integer k,
compute the vectors y~ + , |+|<k as in Theorem 3.1. Finally, solve the linear
system given in the sum rule equations (1.6). The existence of a solution to
(1.6) is guaranteed by Theorem 3.4 by appropriately choosing the support
of the dual masks. The general CBC algorithm for any primal mask with
r=1 is explicitly given in [5]. Therefore, for any primal mask a, we can
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employ the CBC algorithm to obtain a dual mask a~ of a such that a~
satisfies the sum rules of any preassigned order. If the subdivision schemes
associated with the primal mask a and the dual mask a~ converge in the L2

norm, respectively, then we have the primal function vector ,a and its dual
function vector ,a~ such that the biorthogonal relation (1.8) holds. It is easy
to numerically check the L2 convergence of a subdivision scheme [11, 18,
30, 31, 39].

Now an important question which we didn't answer yet is the following:
how to obtain primal masks? In Section 4, we shall propose a general way
of constructing Hermite interpolatory masks and such Hermite inter-
polatory masks consist of an important family of primal masks.

4. HERMITE INTERPOLATORY MASKS AND BIORTHOGONAL
MULTIWAVELETS

In this section, we shall study an important family of primal masks��
Hermite interpolatory masks. Hermite interpolatory masks are employed
and are useful in curve design in computer aided geometric design [13].
Several examples of biorthogonal multiwavelets are presented to illustrate
the general theory developed in Section 3. For simplicity, all the examples
are given for the case s=1, r=2, and M=(2) though the CBC algorithm
developed in Section 3 can be easily applied to the general case.

Let ,=(,1 , ..., ,r)
T be a function vector. We say that , is a Hermite

interpolant if all the functions ,j , j=1, ..., r belong to C r&1(R) and satisfy

, (l )
j (k)=$( j&l&1) $(k) \k # Z, l=0, ..., r&1, j=1, ..., r, (4.1)

where , (l )
j means the l th derivative of , j . Let ,=(,1 , ..., ,r)

T and c l
k , k # Z,

l=0, ..., r&1 be given data. We can construct a function f as

f (x)= :
r&1

l=0

:
k # Z

c l
k,l+1(x&k), x # R.

If , is a Hermite interpolant, then f (l )(k)=c l
k for all k # Z and l=0, ...,

r&1.

Lemma 4.1. Let a # (l0(Z))r_r be a finitely supported mask and , be the
normalized solution of the refinement equation (1.1) with mask a and the
dilation factor M=(d ) where d is an integer. If , is a Hermite interpolant,
then a(dj)=$( j) diag(1, d &1, ..., d 1&r) for all j # Z and a satisfies the sum
rules of order r as defined in (1.6) with [ y0 , ..., yr&1] where yj=e j+1 ,
j=0, ..., r&1 and ej is the jth coordinate unit vector in Rr.
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Proof. From the refinement equation (1.1), we have

[,(k), ,$(k), ..., ,(r&1)(k)]

= :
j # Z

a( j)[,(dk& j), d,$(dk& j), ..., d r&1, (r&1)(dk& j)]

for all k # Z. By (4.1), it is evident that a(dj)=$( j) diag(1, d &1, ..., d 1&r)
for all j # Z. Note that the shifts of , are linearly independent since , is a
Hermite interpolant. Therefore, , # C r&1 implies that , has accuracy order
r. By Theorem 2.4, a must satisfy the sum rules of order r with some
vectors [ y0 , y1 , ..., yr&1] such that

xr&1

(r&1)!
= :

0�&�r&1

:
j # Z

j&

& !
yT

r&1&& ,(x& j) \x # R.

Therefore,

_ xr&1

(r&1)!
, ..., x, 1&

= :
0�&�r&1

:
j # Z

j&

& !
yT

r&1&&[,(x& j), ..., ,(r&1)(x& j)], x # R.

Since , is a Hermite interpolant, from (4.1), we have

_ kr&1

(r&1)!
,

kr&2

(r&2)!
, ..., k, 1&= :

0�&�r&1

k&

& !
yT

r&1&& \k # Z,

which implies yj=ej+1 for all j=0, ..., r&1. K

For any a # (l0(Z))r_r, we say that a is a Hermite interpolatory mask
with the dilation factor M=(d ) if a(dj)=$( j) diag(1, d &1, ..., d 1&r) for all
j # Z and a satisfies the sum rules of order r as defined in (1.6) with
[ y0 , y1 , ..., yr&1] where yj=ej+1 , j=0, ..., r&1 and ej is the j th coor-
dinate unit vector in Rr. Let ,a be the normalized solution of (1.1) with a
mask a and a dilation factor M=(d ). If ,a is a Hermite interpolant, by
Lemma 4.1, it is necessary that a is a Hermite interpolatory mask with the
dilation factor M=(d ).

The following theorem gives us a family of Hermite interpolatory masks.
For simplicity of proof, we only deal with s=1, M=(2) and r=2 in the
following result.

Theorem 4.2. For any N # N, there is a unique mask bN in (l0(Z))2_2

with the dilation factor M=(2) such that
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(a) bN is supported on [1&2N, 2N&1];

(b) bN is a Hermite interpolatory mask;

(c) bN satisfies the sum rules of order 4N.

Proof. By the definition of sum rules, it is equivalent to proving that
there is a unique mask bN in (l0(Z))2_2 such that bN is supported on
[1&2N, 2N&1], bN(2 j)=$( j) diag(1, 1�2) and

:
0�&�+

(&1) |&| J bN
1

(&)T y+&&=2&|+|y+ \0�+<4N, (4.2)

where yT
0 =[1, 0], yT

1 =[0, 1] and y&=0 for 2�&<4N. Recall that
bN(1+2 j)[i, k] denotes the (i, k) entry of the matrix bN(1+2 j). It suffices
to prove that the following linear systems for all 0�+<4N,

:
N&1

j=&N

bN(1+2 j)[1, 1]
(1�2+ j)+

+!

& :
N&1

j=&N

bN(1+2 j)[2, 1]
(1�2+ j)+&1

(+&1)!
=$(+) (4.3)

and

:
N&1

j=&N

bN(1+2 j)[1, 2]
(1�2+ j)+

+ !

& :
N&1

j=&N

bN(1+2 j)[2, 2]
(1�2+ j)+&1

(+&1)!
=&

$(+&1)
2

(4.4)

have a unique solution. Here, we used the convention (&1)!=�.
Let A be a 4N by 4N square matrix given by A[+, 2( j+N)]=

(1�2+ j)+�+ ! and A[+, 2( j+N)+1]=(1�2+ j)+&1�(+&1)! for 0�+<4N
and j=&N, ..., N&1. Then the linear system (4.3) can be rewritten in the
matrix form as

Ax=[1, 0, ..., 0]T,

where x[2( j+N)]=bN(1+2 j)[1, 1] and x[2( j+N)+1]=&bN(1+2 j)[2, 1]
for j=&N, ..., N&1.

To see that the linear system (4.3) has a unique solution, it suffices to
demonstrate that A is invertible, i.e., if *TA=0 for some vector *=
(*+)0�+<4N , then *=0. Let

F(x) := :
0�+<4N

*+
x+

+ !
.
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Then *TA=0 is equivalent to

F(1�2+ j)=0 and F $(1�2+ j)=0 \j=&N, ..., N&1. (4.5)

It is well known that the only solution to (4.5) is F=0. Therefore, *=0
and (4.3) has a unique solution. Similarly, (4.4) has a unique solution. K

By a similar argument as in the proof of Theorem 4.2, we have the
following result which is a generalization of [19, Theorem 2.1]. In the
following, by ej we denote the j th unit vector in Rr.

Theorem 4.3. Let d be an integer such that d>1. Then for any positive
integers l and h, there exists a unique mask a in (l0(Z))r_r with the dilation
factor M=(d ) such that

(a) a is supported on [1&dl, dh&1];

(b) a(dj)=$( j) diag(1, d &1, d &2, ..., d 1&r) for all j # Z;

(c) a satisfies the sum rules of order r(l+h) with [ yj : 0�j<r(l+h)]
where yj=ej+1 for j=0, ..., r&1 and yj=0 for r� j<r(l+h).

Though in the above results we only deal with the Hermite interpolatory
masks, we shall analyze the smoothness and other important properties of
the normalized solution ,a associated with the Hermite interpolatory mask
a which is constructed in Theorem 4.3 elsewhere. It is evident that any
Hermite interpolatory mask is a primal mask. Before introducing several
examples, let us recall some facts about Lp smoothness of refinable function
vectors.

For any 1�p�� and 0<'�1, the Lipschitz space Lip(', Lp(Rs))
consists of those functions f in Lp(R

s) for which

& f& f ( } &t)&p�C &t&' \t # Rs,

where C is a constant independent of t.
The Lp smoothness of a function f # Lp(Rs) in the Lp norm is described

by its Lp critical exponent &p( f ) defined by

&p( f ) :=sup [n+' : �:f # Lip(', Lp(Rs)) \ |:|=n, : # Zs
+],

where :=(:1 , ..., :s), |:| :=|:1|+ } } } +|:s |, and

�:f :=
� |:|f

�x:1
1

} } } �x:s
s

.
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Evidently &�( f ) is exactly the Ho� lder exponent of a function as defined
in the current literature (see [11]). For any &>0, the Sobolev space
W &

2(Rs) contains of all the functions f # L2(Rs) for which

|
R s

| f� (!)|2 (1+|!| &)2 d!<�.

It is well known that &2( f )=sup [&: f # W &
2(Rs)].

If f =( f1 , ..., fr)
T is a function vector in (Lp(Rs))r, then its Lp critical

exponent &p( f ) is defined by

&p( f ) :=min[&p( f1), ..., &p( fr)].

For any sequence * # (l0(Zs))r_r, &*&p :=(�: # Z s |*(:)| p)1�p where | } |
denotes a matrix norm. The difference operator {j is defined to be

{j * :=*&*( } &ej), * # (l0(Zs))r_r.

When s=1 and m=(2), the Lp smoothness of ,a was characterized in
[30, 34]. For L2 smoothness of refinable function vectors, also see [31, 38,
39]. By using [17, Theorem 3.1], the result about Lp smoothness of
refinable functions in [17, 30] can be easily generalized to the general case.
By a similar argument as in [17, 30], we have the following result:

Theorem 4.4. Let ,=(,1 , ..., ,r)
T # (Lp(Rs))r (1�p��) be the nor-

malized distributional solution of the refinement equation (1.1) with a finitely
supported mask a and a dilation matrix M with m :=|det M| such that M j

is a multiple of the identity matrix for some integer j. For any nonnegative
integer k, define

_M
k, p(a) :=max[ lim

n � �
&{k

j S n
a $I&1�n

p : j=1, ..., s],

where $I (:)=$(:) Is for : # Zs. Then &p(,)�s�p&s logm _M
k, p(a). If the

shifts of , are stable and k>&p(,), then

&p(,)=s�p&s logm _M
k, p(a).

Let Ta be the linear operator on (l0(Zs))r_r defined by

Ta*(:)= :
; # Z s

:
# # Z s

a(M:&;) *(;+#) a(#)T,

: # Zs, * # (l0(Zs))r_r,
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and let 2j denote the operator defined by 2j*=&*( } &ej)+2*&*( } +ej).
Then

_M
k, p(a)=- \(Ta | W),

where \(Ta |W) is the spectral radius of Ta restricted to the finite dimensional
space W, and W is the minimal Ta -invariant space generated by
[2k

j $I : j=1, ..., s].

Throughout rest of this section, by U we denote the following 2_2
matrix:

U :=_1
0

0
&1& .

In the following we shall first present several examples of Hermite inter-
polants constructed in Theorem 4.2. Then we shall use the CBC algorithm
developed in Section 3 to construct several examples of biorthogonal
wavelets. Throughout rest of this section, we assume that s=1, M=(2)
and r=2.

Example 4.5. The Hermite interpolatory mask b1 in Theorem 4.2 is
given by

b1(&1)=_
1
2

& 1
8

3
4

& 1
8& , b1(0)=_1

0
0
1
2& , b1(1)=_

1
2
1
8

& 3
4

& 1
8& ,

with b1(;)=0 for ;{ &1, 0, 1. By Theorem 3.1, we have

y~ T
0 =[1, 0], y~ T

1 =[0, 1�15], y~ T
2 =[1�15, 0],

y~ T
3 =[0, 1�315], y~ T

4 =[1�560, 0], y~ T
5 =[0, 1�15120],

y~ T
6 =[1�37800, 0], y~ T

7 =[0, 1�1247400], y~ T
8 =[1�3991680, 0],

y~ T
9 =[0, 1�155675520].

By using the CBC algorithm, we find a dual mask a~ of b1 given by

a~ (0)=_
205151
147456

0
0

473515
294912& , a~ (1)=_

3505
8192
30153
8192

& 26671
221184

& 163379
147456& ,

a~ (2)=_ & 13229
73728

& 127889
98304

11537
221184
75973
147456& , a~ (3)=_

591
8192
3027
8192

& 217
8192

& 2333
16384& ,

a~ (4)=_& 531
32768

& 5109
65536

187
16384
3721
65536& , a~ (;)=0 \;>4,
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and a~ (&;)=Ua~ (;) U for all ; # N. Note that ,b1=(,b1
1

, ,b1
2

)T is the well
known cubic Hermite splines (see [23]) and can be explicitly expressed as

,b1
1

(t)=(t+1)2 (&2t+1) /[&1, 0]+(t&1)2 (2t+1) /[0, 1]

and

,b1
2

(t)=(t+1)2 t/[&1, 0]+(t&1)2 t/[0, 1] ,

where /E is the characteristic function of the set E. It is evident that ,b1 has
accuracy order 4 (see [23]) and &p(,b1)=2+1�p for any 1�p��. It is
easy to check that ,a~ is a dual function vector of ,b1. Moreover,
&2(,a~ )r1.501802 and ,a~ has accuracy order 4. Therefore, ,a~ is a C1 dual
function vector of the well known cubic Hermite splines and ,a~ is supported
on [&4, 4]. A continuous dual function vector of ,b1 with support [&2, 2]
was given in Dahmen et al. [8].

Another dual mask a~ 1 of b1 is given by

a~ 1(0)=_
11046301
7864320

0
0

801731
524288& , a~ 1(1)=_

3235271
7864320
20044101
5242880

& 120589
983040

& 5864319
5242880& ,

a~ 1(2)=_& 4372675
25165824

& 62155111
41943040

35593
786432
516945
1048576& , a~ 1(3)=_

2604317
31457280
5880671
10485760

& 261013
10485760

& 1801093
10485760& ,

a~ 1(4)=_& 424669
15728640

& 1785087
10485760

39523
3145728

93245
1048576& , a~ 1(5)=_

183239
31457280

267049
10485760

& 57119
31457280

& 82729
10485760& ,

a~ 1(6)=_& 195121
125829120

& 285911
41943040

1051
1048576

9
2048 & , a~ 1(;)=0 \;>6,

and a~ 1(&;)=Ua~ 1(;) U for all ; # N. It is not difficult to verify that ,a~ 1 is
a dual function vector of ,b1 such that ,a~ 1 has accuracy order 10 and
&2(,a~ 1)r2.12273. Therefore, &�(,a~ 1)>1.62272 which implies ,a~ 1 # C1.

Example 4.6. The Hermite interpolatory mask b2 in Theorem 4.2 is
given by

b2(&3)=_
13
512

& 3
512

5
512

& 1
512& , b2(&1)=_

243
512

& 81
512

405
512

& 81
512& ,

b2(0)=_1
0

0
1
2& , b2(1)=_

243
512
81
512

& 405
512

& 81
512& ,

b2(3)=_
13
512

3
512

& 5
512

& 1
512& , b2(;)=0 \;{&3, &1, 0, 1, 3.
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By Theorem 3.1, we have y~ T
0 =[1, 0]. A dual mask a~ of b2 is given by

a~ (0)=_
1157
1024

0
0

1747
1024& , a~ (1)=_

1
2
5
2

& 1
4

& 9
8& , a~ (2)=_ & 7

128

& 455
2048

11
128
411
1024& ,

a~ (3)=_0
0

0
0& , a~ (4)=_& 21

2048

& 215
4096

5
1024

51
2048& , a~ (;)=0 \;>4,

and a~ (&;)=Ua~ (;) U for all ; # N. Then ,b2 is a Hermite interpolant such
&2(,b2)r3.394956 and ,b2 has accuracy order 8. ,a~ is a dual function vector
of ,b2 with &2(,a~ )r0.75620 and has accuracy order 1. Therefore, ,a~ is a
continuous dual function vector of ,b2 # C2 since &�(,a~ )�0.25620.

Example 4.7. The Hermite interpolatory mask a by modifying the
mask b2 is given by

a(&3)=_
13
512

& 3
512

1
32

& 1
128& , a(&1)=_

243
512

& 81
512

27
32

& 27
128& ,

a(0)=_1
0

0
1
2& , a(1)=_

243
512
81
512

& 27
32

& 27
128& ,

a(3)=_
13
512

3
512

& 1
32

& 1
128& , a(;)=0 \;{&3, &1, 0, 1, 3.

Then y~ T
0 =[1, 0] and y~ T

1 =[0, 5�56]. By the CBC algorithm, a dual mask
a~ of a is given by

a~ (0)=_
2395
2048

0
0

3311
2048& , a~ (1)=_

1
2

5453
2160

& 27
128

& 149
160& ,

a~ (2)=_ & 161
2048

& 176519
552960

321
4096
33341
92160& , a~ (3)=_0

0
0
0& ,

a~ (4)=_ & 25
4096

& 7741
221184

21
8192
2771

184320& , a~ (;)=0 \;>4,

and a~ (&;)=Ua~ (;) U for all ; # N. Then ,a is a Hermite interpolant such
that &2(,a)r3.84745 and ,a has accuracy order 7. ,a~ is a dual function
vector of ,a such that &2(,a~ )r0.91843 and ,a~ has accuracy order 2. There-
fore, ,a~ is a continuous dual function vector of ,a since &�(,a~ )�0.41843.
Moreover, ,a # C3.

Though the primal masks in all the above examples are interpolatory
masks, the CBC algorithm can be easily applied to the general case. Let us
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take an example from Plonka and Strela [37] as the primal mask and then
we use the CBC algorithm to construct a dual function vector for it.

Example 4.8. The primal mask a in [37] is given by

a(0)=_
13
64
11
64

& 9
64

& 7
64& , a(1)=_

51
64
21
64

& 9
64

9
64 & a(2)=_

51
64

& 21
64

9
64
9
64& ,

a(3)=_
13
64

& 11
64

9
64

& 7
64& , a(;)=0 \;{0, 1, 2, 3.

Then as pointed out in [37] that the refinable function vector ,a is a
piecewise polynomial B-spline of order 6 with double knots. &p(,a)=
4+1�p for any 1�p�� and ,a has accuracy order 6. By Theorem 3.1, we
have

y~ T
0 =[1, 0], y~ T

1 =[3�2, &3�14], y~ T
2 =[17�14, &9�28],

y~ T
3 =[39�56, &43�168], y~ T

4 =[529�1680, &1�7].

By using the CBC algorithm, we find a dual mask a~ of a given by

a~ (2)=_
159239
122880

& 12198157
3317760

28291
122880
919531
3317760& , a~ (3)=_& 18621

40960
5400373
3317760

7653
40960

& 1043381
3317760& ,

a~ (4)=_
1347
5120

& 847007
1105920

& 1273
10240

& 47627
368640& , a~ (5)=_& 1169

7680
961993
3317760

& 551
31720

331813
3317760 & ,

a~ (6)=_
411
8192

& 321
4096

531
8192

& 63
512& , a~ (7)=_& 19

8192

& 5
4096

& 45
8192
3

1024 & ,

and a~ (;)=Ua~ (3&;) U for ;=&4, &3, &2, &1, 0, 1, and otherwise,
a~ (;)=0. Then ,a~ is a dual function vector of ,a with &2(,a~ )r1.13543 and
has accuracy order 5. Therefore, ,a~ is a continuous dual function vector of
,a since &�(,a~ )�0.63543.

The graphs of all the above examples in this section are presented in
Figs. 1�5. More examples of biorthogonal multiwavelets can be constructed
by using the CBC algorithm studied in this paper and such algorithm can
be easily implemented. Finally, we mention that the study of approxima-
tion order of biorthogonal multiwavelets in this paper is not only useful for
construction of biorthogonal multiwavelets but also helpful for construc-
tion of orthogonal multiwavelets.
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FIG. 1. (a), (b), (c), and (d). Graphs of ,b1
1

, ,b1
2

, ,a~
1 , and ,a~

2 in Example 4.5, respectively.
,b1 is the piecewise Hermite cubics and ,a~ is a C1 dual function vector of ,b1.

FIG. 2. (a), (b), (c), and (d). Graphs of ,b2
1

, ,b2
2

, ,a~
1 , and ,a~

2 in Example 4.6, respectively.
,b2 is a C 2 Hermite interpolant and ,a~ is a continuous dual function vector of ,b2.
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FIG. 3. (a), (b), (c), and (d). Graphs of ,a
1 , ,a

2 , ,a~
1 , and ,a~

2 in Example 4.7, respectively.
,a is a C 3 Hermite interpolant and ,a~ is a continuous dual function vector of ,a.

FIG. 4. (a), (b), (c), and (d). Graphs of ,a
1 , ,a

2 , ,a~
1 , and ,a~

2 in Example 4.8, respectively.
,a # C 3 is a polynomial B-spline of order 6 with double knots and ,a~ is a continuous dual
function vector of ,a.
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FIG. 5. (c) Graph of ,a~ 1
1

. (d) Graph of ,a~ 1
2

in Example 4.5. ,a~ 1 # C1 is a dual function
vector of ,b1.
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